Nuevas medidas de los niveles de yodo en la estratosfera de la Tierra pueden ayudar a explicar por qué parte de la capa de ozono de nuestro planeta no se está recuperando tan rápido como se esperaba, a pesar de los esfuerzos de los últimos años en la reducción de los CFC y otros compuestos que la dañaban. Esta capa nos protege de la radiación ultravioleta que puede causar cáncer de piel y dañar los cultivos.

Los datos del estudio, publicado en la revista PNAS, revelan que los niveles de yodo registrados en la baja estratosfera de latitudes medias (zonas tropicales y templadas) serían responsables de hasta el 32% de la pérdida de ozono mediada por halógenos, superando la contribución relativa del cloro (28%) y casi alcanzando la contribución del bromo (40%).

Hasta ahora la mayoría de las investigaciones sobre la química de halógenos (los elementos del grupo 17 de la tabla periódica: flúor, cloro, bromo, yodo, astato y teneso) en esta zona de la atmósfera, situada entre los 10 y 40 kilómetros de altura, se habían centrado en la capacidad de destrucción de la capa de ozono de los compuestos clorados y bromados.

Estas sustancias son los halógenos más abundantes en la atmósfera y además sus tiempos de reactividad son suficientemente largos como para ser transportados a la estratosfera, que es donde participan en la destrucción del ozono. Sin embargo, el nuevo trabajo confirma que los compuestos yodados, a pesar de tener unos tiempos de vida más cortos, también pueden llegar a la atmósfera y afectar a la capa de ozono. 

“Los resultados muestran la importancia de considerar la química de yodo tanto en la troposfera (la capa inferior de la atmósfera) como en la estratosfera en los modelos climáticos, ya que la emisión natural de sustancias yodadas a la atmósfera es altamente dependiente de la evolución del clima y se espera que el impacto de las sustancias yodadas aumente en el futuro respecto a las fuentes cloradas y bromadas”, destaca el coautor Alfonso Saiz-López, investigador del CSIC en el Instituto de Química Física “Rocasolano”.

El grupo liderado por Saiz-López estudia desde hace más de una década la contribución de las fuentes naturales de halógenos de vida corta, como el yodo, sobre la capacidad oxidativa de la tropósfera y la estratósfera. En esta ocasión, ha colaborado un equipo norteamericano pionero en obtener medidas cuantitativas de los niveles de yodo presentes en la estratosfera.

Las mediciones del yodo tanto en fase gaseosa como en fase aerosol las han realizado mediante el laboratorio instalado en el avión GulfstreamV del National Center for Atmospheric Research (NCAR), que posee instrumentación de última tecnología para el análisis de la alta atmósfera.

avion

Avión científico Gulfstream-V con el que se han hecho las mediciones de yodo en la estratosfera. / NASA

“Debido a que no es sencillo identificar el límite exacto entre la alta troposfera y la baja estratosfera durante el vuelo, se utilizó la relación existente entre los niveles de vapor de agua (H2O) y ozono (O3), que son muy diferentes entre ambas regiones”, comenta el científico del CSIC Carlos Cuevas, también del Instituto de Química Física “Rocasolano”.

El trabajo sugiere también que la pérdida de ozono estratosférico debido a la presencia de yodo ocurre por procesos químicos y físicos. Según los autores, "las emisiones marinas de yodo han aumentado debido al aumento del ozono superficial en las últimas décadas. Esta fuente de yodo cada vez mayor inducida por el hombre de los océanos se propaga a la franja de la troposfera superior y estratosfera inferior. Nuestros resultados plantean un posible vínculo entre la calidad del aire superficial, la pérdida de ozono estratosférico y el forzamiento radiativo o climático en esa zona".

“En 2015 publicamos un artículo con una fuerte componente de modelado el que sugeríamos que el yodo emitido por los océanos podía llegar a la estratosfera en cantidades significativas. En ese artículo se sugerían eficientes reacciones de reciclado heterogéneo del yodo inorgánico sobre cristales de hielo y aerosoles atmosféricos como un mecanismo para que nuestras predicciones fueran consistentes con las medidas existentes hasta ese momento”, explica Saiz-López.

“Las medidas realizadas con el Gulfstream-V –apunta el investigador- confirman que el mecanismo que propusimos (o uno muy equivalente) ocurre en la atmósfera real, aunque su eficiencia, velocidad y distribución espacial no sea completamente conocida todavía. Esto abre un abanico de nuevos estudios a realizar, tanto desde un enfoque teórico como experimental”.

Referencia bibliográfica:

Theodore K. Koenig, Sunil Baidar, Pedro Campuzano-Jost, Carlos A. Cuevas, Barbara Dix, Rafael P. Fernandez, Hongyu Guo, Samuel R. Hall, Douglas Kinnison, Benjamin A. Nault, Kirk Ullmann, Jose L. Jimenez, Alfonso Saiz-Lopez y Rainer Volkamer. "Quantitative Detection of Iodine in the Stratosphere". Proceedings of the National Academy of Sciences (PNAS). DOI: 10.1073/pnas.1916828117